Denervation Causes Fiber Atrophy and Myosin Heavy Chain Co-Expression in Senescent Skeletal Muscle

نویسندگان

  • Sharon L. Rowan
  • Karolina Rygiel
  • Fennigje M. Purves-Smith
  • Nathan M. Solbak
  • Douglas M. Turnbull
  • Russell T. Hepple
چکیده

Although denervation has long been implicated in aging muscle, the degree to which it is causes the fiber atrophy seen in aging muscle is unknown. To address this question, we quantified motoneuron soma counts in the lumbar spinal cord using choline acetyl transferase immunhistochemistry and quantified the size of denervated versus innervated muscle fibers in the gastrocnemius muscle using the in situ expression of the denervation-specific sodium channel, Nav₁.₅, in young adult (YA) and senescent (SEN) rats. To gain insights into the mechanisms driving myofiber atrophy, we also examined the myofiber expression of the two primary ubiquitin ligases necessary for muscle atrophy (MAFbx, MuRF1). MN soma number in lumbar spinal cord declined 27% between YA (638±34 MNs×mm⁻¹) and SEN (469±13 MNs×mm⁻¹). Nav₁.₅ positive fibers (1548±70 μm²) were 35% smaller than Nav₁.₅ negative fibers (2367±78 μm²; P<0.05) in SEN muscle, whereas Nav₁.₅ negative fibers in SEN were only 7% smaller than fibers in YA (2553±33 μm²; P<0.05) where no Nav₁.₅ labeling was seen, suggesting denervation is the primary cause of aging myofiber atrophy. Nav₁.₅ positive fibers had higher levels of MAFbx and MuRF1 (P<0.05), consistent with involvement of the proteasome proteolytic pathway in the atrophy of denervated muscle fibers in aging muscle. In summary, our study provides the first quantitative assessment of the contribution of denervation to myofiber atrophy in aging muscle, suggesting it explains the majority of the atrophy we observed. This striking result suggests a renewed focus should be placed on denervation in seeking understanding of the causes of and treatments for aging muscle atrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Timing of Electromyostimulation on Denervated Skeletal Muscle Atrophy

Introduction: In this study we evaluated the effect of electromyostimulation (EMS) on myosin heavy chain (MHC) isoform expression in denervated rat muscles to determine the optimal timing for EMS application. Methods: EMS was initiated on post-injury day 1 for the group with denervation receiving immediate EMS (DIEMS) and on post-injury day 15 for the group with denervation receiving delayed EM...

متن کامل

Quantitative PCR analysis of laryngeal muscle fiber types.

UNLABELLED Voice and swallowing dysfunction as a result of recurrent laryngeal nerve paralysis can be improved with vocal fold injections or laryngeal framework surgery. However, denervation atrophy can cause late-term clinical failure. A major determinant of skeletal muscle physiology is myosin heavy chain (MyHC) expression, and previous protein analyses have shown changes in laryngeal muscle ...

متن کامل

A histone deacetylase 4/myogenin positive feedback loop coordinates denervation-dependent gene induction and suppression.

Muscle activity contributes to formation of the neuromuscular junction and affects muscle metabolism and contractile properties through regulated gene expression. However, the mechanisms coordinating these diverse activity-regulated processes remain poorly characterized. Recently, it was reported that histone deacetylase 4 (HDAC4) can mediate denervation-induced myogenin and nicotinic acetylcho...

متن کامل

Denervation effects on myonuclear domain size of rat diaphragm fibers.

Denervation (DNV) of rat diaphragm muscle (DIAm) leads to selective atrophy of type IIx and IIb fibers, whereas the cross-sectional area of type I and IIa fibers remains unchanged or slightly hypertrophied. DIAm DNV also increases satellite cell mitotic activity and myonuclear apoptosis. Similar to other skeletal muscles, DIAm fibers are multinucleated, and each myonucleus regulates the gene pr...

متن کامل

Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4.

Skeletal muscle denervation causes muscle atrophy via complex molecular mechanisms that are not well understood. To better understand these mechanisms, we investigated how muscle denervation increases growth arrest and DNA damage-inducible 45α (Gadd45a) mRNA in skeletal muscle. Previous studies established that muscle denervation strongly induces Gadd45a mRNA, which increases Gadd45a, a small m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012